Con colpevole ritardo la seconda puntata.
Dopo avervi dato informazioni preliminari (spero in maniera comprensibile) per parlare del bosone di Higgs
qui, ora entriamo nel dettaglio e cerchiamo di capire cos'è veramente questo bosone e perché è così importante.
Cos'è il bosone di Higgs
Il bosone di Higgs è un mediatore di un campo. Ma cosa significa ciò?
Cerchiamo prima di tutto di capire cosa è un campo. Questo non dovrebbe essere difficile visto che tutti sperimentiamo quotidianamente almeno due campi: quello elettromagnetico e quello gravitazionale.
Un campo in senso fisico è un qualcosa che permea tutto lo spazio e permette di trasportare determinate informazioni tramite cosiddetti mediatori, che altro non sono che "grumi" del campo stesso.
Insomma, immaginatevi l'universo come una piscina piena di una melassa che per un motivo o per l'altro ogni tanto si raggruma. Ecco, il campo (elettromagnetico, gravitazionale, di Higgs) è la melassa mentre i mediatori (elettroni, gravitoni [mai osservati, per ora], bosoni di Higgs) sono i grumi.
E questi grumi trasportano informazioni: per gli elettroni, ad esempio, la corrente elettrica, per gli ipotetici gravitoni il peso, per il bosone di Higgs la massa di ogni particella.
Perché è così importante?
Partiamo dalla fine della risposta precedente. La teoria dei campi (spesso detta semplicemente delle particelle e denominata
modello standard) in origine non chiariva come mai le
particelle elementari (cioè i costituenti ultimi di tutto, compresi noi stessi) avessero una massa.
Però che l'avessero era chiaro... visto che noi siamo fatti di particelle e che se ci mettiamo su una bilancia vediamo l'ago spostarsi... vuol dire che da qualche parte la massa arriva :-)
Bene, Peter Higgs studiò il problema e arrivò alla conclusione che ci doveva essere un campo (simile, appunto, a quello elettromagnetico o a quello gravitazionale, come ci arrivò ve lo racconterò nel prossimo articolo) che generava la "massa" e il mediatore - cioè la particella che trasportava l'informazione "massa" - era il bosone di cui stiamo parlando.
Però come è che una particella (o un corpo) acquista la massa?
Torniamo all'esempio della piscina di melassa di cui sopra. Se io mi ci tuffo dentro - per quanto fluida possa essere questa melassa - mi muoverò con molta più fatica che fuori dalla melassa, mi sentirò più pesante. Ho come acquistato massa (cosa di cui non avevo comunque bisogno, avendone già abbastanza, ma questo non c'entra con Higgs).
Ecco io e la melassa siamo come una particella qualsiasi e il campo di Higgs.
Perché quelle strane unità di misura per la massa?
Come avrete letto la massa del bosone di Higgs viene indicata in "GeV" o, più correttamente, in "GeV/c^2" ("c^2" significa "c elevato al quadrato", dove c è la
velocità della luce nel vuoto).
Ora, per una massa tutti vi sareste aspettati una unità di misura tipo grammo, milligrammo o qualche sottomultiplo dalla strano nome, tipo picogrammo (un milionesimo di milionesimo di grammo), femtogrammo (un milionesimo di milardesimo di grammo) o simili.
E invece vi spunta questo misterioso "GeV" (che significa gigaelettronvolt, cioè un miliardo di
elettronvolt) che è un'unità di misura dell'energia, non della massa.
Perché? La risposta è molto semplice: quando andiamo nell'infinatamente piccolo è impossibile misurare direttamente le masse: trovatemi voi una bilancia su cui posare sopra un elettrone o un quark!
Invece è possibile con strumenti adeguati misurare l'
energia cinetica di queste particelle. E dato che a queste scale sappiamo grazie a zio Albert (alias Albert Einstein) che vale la relazione "E=m*c^2" (dove E è l'energia cinetica, m la massa e c la velocità della luce nel vuoto)... allora ci misuriamo E (tipicamente in GeV, come avrete già capito) e ci scriviamo la massa nella forma "m=E/c^2".
Seguirà un altro articolo per cercare di descrivervi come era stata prevista la sua esistenza e come è stato effettivamente osservato (e se è stato veramente osservato).
Saluti,
Mauro.